컴파일러
FuriosaAI의 컴파일러는 TFLite 와 Onnx 형식의 모델을 컴파일하여 FuriosaAI NPU와 호스트 머신의 자원(CPU, 메모리)을 이용해 추론(inference)을 실행하는 프로그램을 생성한다. 이 과정에서 모델을 연산자 단위로 분석하고 최적화하여 최대한 NPU 가속와 호스트 자원을 잘 활용할 수 있도록 프로그램을 생성한다. 따라서, 기존에 알려진 모델이 아니라도 지원되는 연산자를 잘 활용하면 NPU에 최적화된 모델을 설계할 수 있다. NPU 가속이 지원되는 연산자 목록은 NPU 가속 지원 연산자 목록 에서 찾을 수 있다.
furiosa compile
컴파일러는 추론 API의 Session을 초기화 하는 과정에서 모델과 NPU를 초기화할 때
자동으로 호출되어 사용되는 것이 가장 일반적인 사용 방법이다.
그러나 쉘에서 명령행 도구인 furiosa compile
이용해 직접 모델을 컴파일하여 프로그램을 생성해볼 수 있다.
furiosa compile
명령은 Python SDK 설치 및 사용 가이드 를 설치하면 사용 가능해진다.
명령의 인자는 다음과 같다. MODEL_PATH
는
TFLite 나 Onnx 파일의 경로이다.
furiosa compile MODEL_PATH [-o OUTPUT] [--target-npu TARGET_NPU] [--batch BATCH_SIZE]
-o OUTPUT 은 생략 가능한 옵션이며 지정한다면 출력되는 파일 이름을 지정할 수 있다.
생략했을 때 기본 출력 파일 이름은 output.enf
이다. 여기서 enf는 Executable NPU Format의 약어이다.
따라서, 예를 들면 아래와 같이 실행하면 기본으로 output.enf
파일을 생성한다.
furiosa compile foo.onnx
아래와 같이 직접 출력 파일 이름을 지정하면 foo.enf
파일로 생성된다.
furiosa compile foo.onnx -o foo.enf
--target-npu
는 생성한 바이너리가 목표로하는 NPU를 지정하게 한다.
NPU Family |
Number of PEs |
Value |
---|---|---|
Warboy |
1 |
warboy |
Warboy |
2 |
warboy-2pe |
생성한 프로그램이 동작할 NPU가 1개의 PE를 독립적으로 사용하는 Warboy라면 아래와 같이 명령을 실행하면 된다.
furiosa compile foo.onnx --target-npu warboy
2개의 PE (Processing Element)를 Fusing 해서 사용하는 경우는 아래와 같이 실행한다.
furiosa compile foo.onnx --target-npu warboy-2pe
--batch-size
옵션은 추론 API를 통해 추론을 실행할 때
입력으로 전달할 샘플의 개수인 배치 크기 를 지정하게 한다.
배치 크기가 크면 일반적으로 한번에 많은 데이터를 넣고 실행하므로
NPU의 활용도를 높일 수 있고 추론을 실행하는 과정을 공유하므로 더 효율적일 수 있다.
그러나 NPU에 더 많은 메모리가 필요하게 되어 필요한 메모리 사이즈가 NPU의 DRAM 크기를 초과하면
오히려 호스트(Host)와 NPU간에 메모리 I/O 비용이 커져 큰 성능 저하가 일어날 수 있다.
기본 값은 1이며 적절한 설정은 일반적으로 실험을 통해 찾을 수 있다.
참고로, MLPerf™ Inference Edge v2.0
벤치마크에 포함된 일부 모델들의 최적 배치 크기는 다음과 같다.
Model |
Optimal Batch |
---|---|
SSD-MobileNets-v1 |
2 |
Resnet50-v1.5 |
1 |
SSD-ResNet34 |
1 |
원하는 배치 크기가 2인 경우는 아래와 같이 명령을 실행하면 된다.
furiosa compile foo.onnx --batch-size 2
ENF 파일의 활용
FuriosaAI 컴파일러가 컴파일 과정을 마치고 최종적으로 생성해내는 출력물이 ENF (Executable NPU Format) 형식의 데이터이다. 일반적으로, 컴파일 과정은 모델에 따라서 수 초에서 수 분까지 걸리는데 ENF 파일을 한번 생성하여 재사용하면 컴파일을 과정을 생략할 수 있다.
예를 들면, 아래 처럼 PythonSDK 를 사용할 때 session.create()
함수에 인자로 ENF 파일을 전달하면 컴파일 과정을 거치지 않고 즉각적으로
Session
객체를 생성한다.
from furiosa.runtime import session
sess = session.create("foo.enf")