Module furiosa.quantizer.frontend.onnx.transformer.fuse_lp_normalization
Expand source code
import abc
import onnx
from furiosa_sdk_quantizer.interfaces.transformer import Transformer
from furiosa_sdk_quantizer.frontend.onnx.transformer import ONNXTransformer
class FuseLpNormalization(Transformer):
def transform(self, model: onnx.ModelProto) -> onnx.ModelProto:
for transformer in [
Pattern_1,
]:
model = transformer(model).transform()
return model
class Pattern_1(ONNXTransformer, abc.ABC):
"""
transform
prev --> ReduceL2/ReduceL1 --> Clip --> Expand --> Div --> next
+ +
-------------------------------------------->
to
prev --> LpNormalization --> next
"""
def pattern_matching(self, base_node):
inputs = base_node.input
pattern_to_match = ['ReduceL2/ReduceL1', 'Clip', 'Expand', 'Div']
matched_nodes = self.pattern_matcher(base_node, pattern_to_match)
if not matched_nodes:
return inputs
top_node = matched_nodes[0]
self.transform_to_fuse(matched_nodes,
nodes_to_add=[
self.make_node('LpNormalization', [top_node.input[0]], [base_node.output[0]],
top_node.name,
**self.get_attrs(top_node))
])
return top_node.input
def get_attrs(self, node):
from furiosa_sdk_quantizer.frontend.onnx.quantizer.utils import attribute_to_kwargs
attrs = attribute_to_kwargs(node.attribute)
if node.op_type == 'ReduceL1':
p = 1
elif node.op_type == 'ReduceL2':
p = 2
else:
raise Exception()
return {'axis': int(attrs['axes'][0]),
'p': int(p)}
Classes
class FuseLpNormalization (*args, **kwds)
-
Abstract base class for generic types.
A generic type is typically declared by inheriting from this class parameterized with one or more type variables. For example, a generic mapping type might be defined as::
class Mapping(Generic[KT, VT]): def getitem(self, key: KT) -> VT: … # Etc.
This class can then be used as follows::
def lookup_name(mapping: Mapping[KT, VT], key: KT, default: VT) -> VT: try: return mapping[key] except KeyError: return default
Expand source code
class FuseLpNormalization(Transformer): def transform(self, model: onnx.ModelProto) -> onnx.ModelProto: for transformer in [ Pattern_1, ]: model = transformer(model).transform() return model
Ancestors
- furiosa_sdk_quantizer.interfaces.transformer.Transformer
- typing.Generic
Methods
def transform(self, model: onnx.onnx_ml_pb2.ModelProto) ‑> onnx.onnx_ml_pb2.ModelProto
-
Expand source code
def transform(self, model: onnx.ModelProto) -> onnx.ModelProto: for transformer in [ Pattern_1, ]: model = transformer(model).transform() return model
class Pattern_1 (model)
-
transform prev –> ReduceL2/ReduceL1 –> Clip –> Expand –> Div –> next + + --------------------------------------------> to prev –> LpNormalization –> next
Expand source code
class Pattern_1(ONNXTransformer, abc.ABC): """ transform prev --> ReduceL2/ReduceL1 --> Clip --> Expand --> Div --> next + + --------------------------------------------> to prev --> LpNormalization --> next """ def pattern_matching(self, base_node): inputs = base_node.input pattern_to_match = ['ReduceL2/ReduceL1', 'Clip', 'Expand', 'Div'] matched_nodes = self.pattern_matcher(base_node, pattern_to_match) if not matched_nodes: return inputs top_node = matched_nodes[0] self.transform_to_fuse(matched_nodes, nodes_to_add=[ self.make_node('LpNormalization', [top_node.input[0]], [base_node.output[0]], top_node.name, **self.get_attrs(top_node)) ]) return top_node.input def get_attrs(self, node): from furiosa_sdk_quantizer.frontend.onnx.quantizer.utils import attribute_to_kwargs attrs = attribute_to_kwargs(node.attribute) if node.op_type == 'ReduceL1': p = 1 elif node.op_type == 'ReduceL2': p = 2 else: raise Exception() return {'axis': int(attrs['axes'][0]), 'p': int(p)}
Ancestors
- furiosa_sdk_quantizer.frontend.onnx.transformer.ONNXTransformer
- abc.ABC
Methods
def get_attrs(self, node)
-
Expand source code
def get_attrs(self, node): from furiosa_sdk_quantizer.frontend.onnx.quantizer.utils import attribute_to_kwargs attrs = attribute_to_kwargs(node.attribute) if node.op_type == 'ReduceL1': p = 1 elif node.op_type == 'ReduceL2': p = 2 else: raise Exception() return {'axis': int(attrs['axes'][0]), 'p': int(p)}
def pattern_matching(self, base_node)
-
Expand source code
def pattern_matching(self, base_node): inputs = base_node.input pattern_to_match = ['ReduceL2/ReduceL1', 'Clip', 'Expand', 'Div'] matched_nodes = self.pattern_matcher(base_node, pattern_to_match) if not matched_nodes: return inputs top_node = matched_nodes[0] self.transform_to_fuse(matched_nodes, nodes_to_add=[ self.make_node('LpNormalization', [top_node.input[0]], [base_node.output[0]], top_node.name, **self.get_attrs(top_node)) ]) return top_node.input