Module furiosa.quantizer.furiosa_sdk_quantizer.frontend.onnx.spec.spec_utils
Expand source code
import onnx
from furiosa_sdk_quantizer.ir.common.operator import HorizontalPadding
def horizontal_pads(f1, f2, f3, f4, s1, s2, s3, s4):
return [
HorizontalPadding(f1, s1),
HorizontalPadding(f2, s2),
HorizontalPadding(f3, s3),
HorizontalPadding(f4, s4),
]
def implicit_axis_to_explicit(axes, input_shape):
assert len(input_shape) > 1
if isinstance(axes, list):
new_axes = []
for axis in axes:
if axis == -1:
new_axes.append(len(input_shape) - 1)
else:
new_axes.append(axis)
return new_axes
elif isinstance(axes, int):
axis = axes
if axis == -1:
return len(input_shape) - 1
else:
return axis
else:
raise Exception('Unknown type: %s. axes must be int or list.' % type(axes))
def gemm_shapes(input_shapes, transA, transB):
if transA == 0:
m, k = input_shapes[0]
else:
k, m = input_shapes[0]
if transB == 0:
k, n = input_shapes[1]
else:
n, k = input_shapes[1]
return m, k, n
def slice_offset_dict(starts, axes, input_shape):
offsets = [0, ] * len(input_shape)
for start, axis in zip(starts, axes):
offsets[axis] = start
return offsets
def node_identifier(node: onnx.NodeProto) -> str:
"""
In the case of onnx, FuriosaAI uses the first output node's name as a node identifier.
"""
return node.output[0]
Functions
def gemm_shapes(input_shapes, transA, transB)
-
Expand source code
def gemm_shapes(input_shapes, transA, transB): if transA == 0: m, k = input_shapes[0] else: k, m = input_shapes[0] if transB == 0: k, n = input_shapes[1] else: n, k = input_shapes[1] return m, k, n
def horizontal_pads(f1, f2, f3, f4, s1, s2, s3, s4)
-
Expand source code
def horizontal_pads(f1, f2, f3, f4, s1, s2, s3, s4): return [ HorizontalPadding(f1, s1), HorizontalPadding(f2, s2), HorizontalPadding(f3, s3), HorizontalPadding(f4, s4), ]
def implicit_axis_to_explicit(axes, input_shape)
-
Expand source code
def implicit_axis_to_explicit(axes, input_shape): assert len(input_shape) > 1 if isinstance(axes, list): new_axes = [] for axis in axes: if axis == -1: new_axes.append(len(input_shape) - 1) else: new_axes.append(axis) return new_axes elif isinstance(axes, int): axis = axes if axis == -1: return len(input_shape) - 1 else: return axis else: raise Exception('Unknown type: %s. axes must be int or list.' % type(axes))
def node_identifier(node: onnx.onnx_ml_pb2.NodeProto) ‑> str
-
In the case of onnx, FuriosaAI uses the first output node's name as a node identifier.
Expand source code
def node_identifier(node: onnx.NodeProto) -> str: """ In the case of onnx, FuriosaAI uses the first output node's name as a node identifier. """ return node.output[0]
def slice_offset_dict(starts, axes, input_shape)
-
Expand source code
def slice_offset_dict(starts, axes, input_shape): offsets = [0, ] * len(input_shape) for start, axis in zip(starts, axes): offsets[axis] = start return offsets