furiosa.quantizer.frontend.onnx.transformer package
Subpackages
Submodules
furiosa.quantizer.frontend.onnx.transformer.convert_2d_sum_to_add module
- class furiosa.quantizer.frontend.onnx.transformer.convert_2d_sum_to_add.Convert2dSumToAdd(*args, **kwds)
Bases:
furiosa.quantizer.interfaces.transformer.Transformer
- transform(model: onnx.onnx_ml_pb2.ModelProto) onnx.onnx_ml_pb2.ModelProto
furiosa.quantizer.frontend.onnx.transformer.convert_conv1d_to_conv2d module
- class furiosa.quantizer.frontend.onnx.transformer.convert_conv1d_to_conv2d.ConvertConv1dToConv2d(*args, **kwds)
Bases:
furiosa.quantizer.interfaces.transformer.Transformer
- transform(model: onnx.onnx_ml_pb2.ModelProto) onnx.onnx_ml_pb2.ModelProto
- class furiosa.quantizer.frontend.onnx.transformer.convert_conv1d_to_conv2d.Pattern_1(model)
Bases:
furiosa.quantizer.frontend.onnx.transformer.ONNXTransformer
- transform
prev –> Reshape –> Conv –> Reshape –> next
- to
prev –> Reshape –> Conv –> Reshape –> next
if Conv.input[0].ndim == 3, i.e., if Conv1d
- get_attrs(mid_node)
- pattern_condition_checker(nodes_to_check)
- pattern_matching(base_node)
- pattern_to_match = ['Reshape', 'Conv', 'Reshape']
furiosa.quantizer.frontend.onnx.transformer.eliminate_redundant_shape_pattern module
- class furiosa.quantizer.frontend.onnx.transformer.eliminate_redundant_shape_pattern.EliminateRedundantShapePattern(*args, **kwds)
Bases:
furiosa.quantizer.interfaces.transformer.Transformer
- transform(model: onnx.onnx_ml_pb2.ModelProto) onnx.onnx_ml_pb2.ModelProto
- class furiosa.quantizer.frontend.onnx.transformer.eliminate_redundant_shape_pattern.Pattern_1(model)
Bases:
furiosa.quantizer.frontend.onnx.transformer.ONNXTransformer
- transform
prev –> Flatten/Squeeze –> Unsqueeze –> next
- to
prev –> ( ) –> next
if prev.output[0].shape == next.input[0].shape
- pattern_condition_checker(nodes_to_check)
- pattern_matching(base_node)
- pattern_to_match = ['Flatten/Squeeze', 'Unsqueeze']
- class furiosa.quantizer.frontend.onnx.transformer.eliminate_redundant_shape_pattern.Pattern_2(model)
Bases:
furiosa.quantizer.frontend.onnx.transformer.eliminate_redundant_shape_pattern.Pattern_1
- transform
prev –> Reshape –> Flatten/Squeeze –> Unsqueeze –> next
- to
prev –> ( ) –> next
if prev.output[0].shape == next.input[0].shape
- pattern_to_match = ['Reshape', 'Flatten/Squeeze', 'Unsqueeze']
- class furiosa.quantizer.frontend.onnx.transformer.eliminate_redundant_shape_pattern.Pattern_3(model)
Bases:
furiosa.quantizer.frontend.onnx.transformer.eliminate_redundant_shape_pattern.Pattern_1
- transform
prev –> Reshape –> next
- to
prev –> ( ) –> next
if prev.output[0].shape == next.input[0].shape
- pattern_to_match = ['Reshape']
- class furiosa.quantizer.frontend.onnx.transformer.eliminate_redundant_shape_pattern.Pattern_4(model)
Bases:
furiosa.quantizer.frontend.onnx.transformer.eliminate_redundant_shape_pattern.Pattern_1
- transform
prev –> Reshape –> Expand –> Expand –> Reshape –> next
- to
prev –> ( ) –> next
if prev.output[0].shape == next.input[0].shape
- pattern_to_match = ['Reshape', 'Expand', 'Expand', 'Reshape']
- class furiosa.quantizer.frontend.onnx.transformer.eliminate_redundant_shape_pattern.Pattern_5(model)
Bases:
furiosa.quantizer.frontend.onnx.transformer.eliminate_redundant_shape_pattern.Pattern_1
- transform
prev –> Reshape –> Expand –> Reshape –> next
- to
prev –> ( ) –> next
if prev.output[0].shape == next.input[0].shape
- pattern_to_match = ['Reshape', 'Expand', 'Reshape']
- class furiosa.quantizer.frontend.onnx.transformer.eliminate_redundant_shape_pattern.Pattern_6(model)
Bases:
furiosa.quantizer.frontend.onnx.transformer.eliminate_redundant_shape_pattern.Pattern_1
- transform
prev –> Reshape –> Reshape –> next
- to
prev –> ( ) –> next
if prev.output[0].shape == next.input[0].shape
- pattern_to_match = ['Reshape', 'Reshape']
- class furiosa.quantizer.frontend.onnx.transformer.eliminate_redundant_shape_pattern.Pattern_7(model)
Bases:
furiosa.quantizer.frontend.onnx.transformer.eliminate_redundant_shape_pattern.Pattern_1
- transform
prev –> Reshape –> Reshape –> Reshape –> next
- to
prev –> ( ) –> next
if prev.output[0].shape == next.input[0].shape
- pattern_to_match = ['Reshape', 'Reshape', 'Reshape']
- class furiosa.quantizer.frontend.onnx.transformer.eliminate_redundant_shape_pattern.Pattern_8(model)
Bases:
furiosa.quantizer.frontend.onnx.transformer.eliminate_redundant_shape_pattern.Pattern_1
- transform
prev –> Expand –> next
- to
prev –> ( ) –> next
if prev.output[0].shape == next.input[0].shape
- pattern_to_match = ['Expand']
furiosa.quantizer.frontend.onnx.transformer.fuse_bn_into_conv module
- class furiosa.quantizer.frontend.onnx.transformer.fuse_bn_into_conv.FuseBnIntoConv(*args, **kwds)
Bases:
furiosa.quantizer.interfaces.transformer.Transformer
- transform(model: onnx.onnx_ml_pb2.ModelProto) onnx.onnx_ml_pb2.ModelProto
- class furiosa.quantizer.frontend.onnx.transformer.fuse_bn_into_conv.Pattern_1(model)
Bases:
furiosa.quantizer.frontend.onnx.transformer.ONNXTransformer
- transform
prev –> Conv –> BatchNormalization –> next
- to
prev –> Conv –> next
- static fuse_bn_params(weight, multiplier, shifter)
- get_bn_params(node)
- static get_multiplier_and_shifter(scale, B, mean, var, eps)
- make_new_init(matched_nodes)
- make_new_node(matched_nodes)
- make_new_vi(matched_nodes)
- pattern_matching(base_node)
- pattern_to_match = ['Conv', 'BatchNormalization']
- class furiosa.quantizer.frontend.onnx.transformer.fuse_bn_into_conv.Pattern_2(model)
Bases:
furiosa.quantizer.frontend.onnx.transformer.fuse_bn_into_conv.Pattern_1
- transform
prev –> BatchNormalization –> next
- to
prev –> Mul –> Add –> next
if prev.op_type != Conv
- make_new_init(matched_nodes)
- make_new_node(matched_nodes)
- make_new_vi(matched_nodes)
- pattern_condition_checker(nodes_to_check)
- pattern_to_match = ['BatchNormalization']
- class furiosa.quantizer.frontend.onnx.transformer.fuse_bn_into_conv.Pattern_3(model)
Bases:
furiosa.quantizer.frontend.onnx.transformer.fuse_bn_into_conv.Pattern_1
- transform
prev –> Conv –> Mul –> Add –> next
- to
prev –> Conv –> next
- if 1. Mul has only one initializer
Add has only one initializer
- check_condition_1(node)
- get_multiplier_and_shifter(mul_node, add_node)
- make_new_init(matched_nodes)
- make_new_node(matched_nodes)
- pattern_condition_checker(nodes_to_check)
- pattern_matching(base_node)
- pattern_to_match = ['Conv', 'Mul', 'Add']
furiosa.quantizer.frontend.onnx.transformer.fuse_bn_into_convtranspose module
- class furiosa.quantizer.frontend.onnx.transformer.fuse_bn_into_convtranspose.FuseBnIntoConvTranspose(*args, **kwds)
Bases:
furiosa.quantizer.interfaces.transformer.Transformer
- transform(model: onnx.onnx_ml_pb2.ModelProto) onnx.onnx_ml_pb2.ModelProto
- class furiosa.quantizer.frontend.onnx.transformer.fuse_bn_into_convtranspose.Pattern_1(model)
Bases:
furiosa.quantizer.frontend.onnx.transformer.fuse_bn_into_conv.Pattern_1
- transform
prev –> ConvTranspose –> BatchNormalization –> next
- to
prev –> ConvTranspose –> next
- static fuse_bn_params(weight, multiplier, shifter)
- make_new_node(matched_nodes)
- pattern_to_match = ['ConvTranspose', 'BatchNormalization']
furiosa.quantizer.frontend.onnx.transformer.fuse_conv module
- class furiosa.quantizer.frontend.onnx.transformer.fuse_conv.FuseConv(*args, **kwds)
Bases:
furiosa.quantizer.interfaces.transformer.Transformer
- transform(model: onnx.onnx_ml_pb2.ModelProto) onnx.onnx_ml_pb2.ModelProto
- class furiosa.quantizer.frontend.onnx.transformer.fuse_conv.Pattern_1(model)
Bases:
furiosa.quantizer.frontend.onnx.transformer.ONNXTransformer
- transform
prev –> MatMul –> Add –> next
- to
prev –> Unsqueeze –> Conv –> Squeeze –> next
- if 1. MatMul.ndim == 2
MatMul must have at most one initializer
Add must have at most one initializer
- check_condition_1(tensor_name)
- check_condition_2(node)
- get_new_init_args(matched_nodes)
- get_new_node_args(matched_nodes)
- get_new_vi_args(matched_nodes)
- make_initializers(w_input, b_input=None, **kwargs)
- make_nodes(node_input, node_output, w_input, b_input, **kwargs)
- make_value_infos(node_input, node_output)
- pattern_condition_checker(nodes_to_check)
- pattern_matching(base_node)
- pattern_to_match = ['MatMul', 'Add']
- weight_transformation(w_arr, **kwargs)
- class furiosa.quantizer.frontend.onnx.transformer.fuse_conv.Pattern_2(model)
Bases:
furiosa.quantizer.frontend.onnx.transformer.fuse_conv.Pattern_1
- transform
prev –> Gemm –> next
- to
prev –> Unsqueeze –> Conv –> Squeeze –> next
- if 1. one of Gemm.A and Gemm.B must have initializer
Gemm.C must have initializer if defined
- check_condition_3(node)
- check_condition_4(node)
- get_attrs(node)
- get_new_init_args(matched_nodes)
- get_new_vi_args(matched_nodes)
- pattern_condition_checker(nodes_to_check)
- pattern_to_match = ['Gemm']
- weight_transformation(w_arr, **kwargs)
- class furiosa.quantizer.frontend.onnx.transformer.fuse_conv.Pattern_3(model)
Bases:
furiosa.quantizer.frontend.onnx.transformer.ONNXTransformer
- transform
prev –> Conv –> Add –> next
- to
prev –> Conv –> next
if len(Conv.input) == 2
- make_initializers(base_node)
- make_nodes(top_node, base_node)
- pattern_condition_checker(nodes_to_check)
- pattern_matching(base_node)
- pattern_to_match = ['Conv', 'Add']
furiosa.quantizer.frontend.onnx.transformer.fuse_depth_to_space module
- class furiosa.quantizer.frontend.onnx.transformer.fuse_depth_to_space.FuseDepthToSpace(*args, **kwds)
Bases:
furiosa.quantizer.interfaces.transformer.Transformer
- transform(model: onnx.onnx_ml_pb2.ModelProto) onnx.onnx_ml_pb2.ModelProto
- class furiosa.quantizer.frontend.onnx.transformer.fuse_depth_to_space.Pattern_1(model)
Bases:
furiosa.quantizer.frontend.onnx.transformer.ONNXTransformer
- transform
prev –> Reshape –> Transpose –> Reshape –> next
- to
prev –> DepthToSpace –> next
if Transpose.perm == [0, 1, 4, 2, 5, 3] or == [0, 3, 4, 1, 5, 2]
- get_attrs(top_node, mid_node)
- pattern_condition_checker(nodes_to_check)
- pattern_matching(base_node)
furiosa.quantizer.frontend.onnx.transformer.fuse_gather_matmul module
- class furiosa.quantizer.frontend.onnx.transformer.fuse_gather_matmul.FuseGatherMatMul(*args, **kwds)
Bases:
furiosa.quantizer.interfaces.transformer.Transformer
- transform(model: onnx.onnx_ml_pb2.ModelProto) onnx.onnx_ml_pb2.ModelProto
- class furiosa.quantizer.frontend.onnx.transformer.fuse_gather_matmul.Pattern_1(model)
Bases:
furiosa.quantizer.frontend.onnx.transformer.ONNXTransformer
- transform
prev –> Gather –> MatMul –> next
- to
prev –> Gather –> next
- if 1. MatMul.ndim == 2
MatMul must have exactly one initializer
- check_condition_1(tensor_name)
- check_condition_2(node)
- get_new_init_args(matched_nodes)
- make_initializers(top_node_init, base_node_init)
- make_nodes(matched_nodes)
- pattern_condition_checker(nodes_to_check)
- pattern_matching(base_node)
- pattern_to_match = ['Gather', 'MatMul']
furiosa.quantizer.frontend.onnx.transformer.fuse_gelu module
- class furiosa.quantizer.frontend.onnx.transformer.fuse_gelu.BertOnnxModel(model)
Bases:
onnxruntime.transformers.onnx_model.OnnxModel
- fuse_gelu()
- class furiosa.quantizer.frontend.onnx.transformer.fuse_gelu.FuseGELU(*args, **kwds)
Bases:
furiosa.quantizer.interfaces.transformer.Transformer
- from:
- Input –> Div –> Erf –> Add –> M
——————> Mul –> ul–> Output
- to:
GELU
- transform(model: onnx.onnx_ml_pb2.ModelProto) onnx.onnx_ml_pb2.ModelProto
furiosa.quantizer.frontend.onnx.transformer.fuse_layer_normalization module
- class furiosa.quantizer.frontend.onnx.transformer.fuse_layer_normalization.BertOnnxModel(model)
Bases:
onnxruntime.transformers.onnx_model.OnnxModel
- fuse_layer_normalization()
- class furiosa.quantizer.frontend.onnx.transformer.fuse_layer_normalization.FuseLayerNormalization(*args, **kwds)
Bases:
furiosa.quantizer.interfaces.transformer.Transformer
- from:
- Input –> ReduceMean –> S –> Pow –> ReduceMean –> Add –> Sqrt –> D
—————–> ub —————————————–> iv –> Mul –> Add Output
- to:
LayerNormalization
- transform(model: onnx.onnx_ml_pb2.ModelProto) onnx.onnx_ml_pb2.ModelProto
furiosa.quantizer.frontend.onnx.transformer.fuse_lp_normalization module
- class furiosa.quantizer.frontend.onnx.transformer.fuse_lp_normalization.FuseLpNormalization(*args, **kwds)
Bases:
furiosa.quantizer.interfaces.transformer.Transformer
- transform(model: onnx.onnx_ml_pb2.ModelProto) onnx.onnx_ml_pb2.ModelProto
- class furiosa.quantizer.frontend.onnx.transformer.fuse_lp_normalization.Pattern_1(model)
Bases:
furiosa.quantizer.frontend.onnx.transformer.ONNXTransformer
- transform
- prev –> ReduceL2/ReduceL1 –> Clip –> Expand –> Div –> next
——————————————–>
- to
prev –> LpNormalization –> next
- get_attrs(node)
- pattern_matching(base_node)
furiosa.quantizer.frontend.onnx.transformer.fuse_pad module
- class furiosa.quantizer.frontend.onnx.transformer.fuse_pad.FusePad(*args, **kwds)
Bases:
furiosa.quantizer.interfaces.transformer.Transformer
- transform(model: onnx.onnx_ml_pb2.ModelProto) onnx.onnx_ml_pb2.ModelProto
- class furiosa.quantizer.frontend.onnx.transformer.fuse_pad.Pattern_1(model)
Bases:
furiosa.quantizer.frontend.onnx.transformer.ONNXTransformer
- transform
prev –> Pad –> MaxPool –> next
- to
prev –> MaxPool –> next
- if 1. Pad.mode == ‘constant’
Pad.constant_value == -inf
padded on spatial dimension
fused_pads[i] < kernel_shape[i] and fused_pads[i + kernel_rank] < kernel_shape[i] for all i
- check_condition_1(node_attr)
- check_condition_2(node)
- check_condition_3(pads_input)
- check_condition_6(node_attrs, pad_input)
- get_attrs(node)
- get_pad_mode(node_attr)
- make_maxpool_pad(pad_input)
- make_new_node(matched_nodes)
- pattern_condition_checker(nodes_to_check)
- pattern_matching(base_node)
- pattern_to_match = ['Pad', 'MaxPool']
- update_attrs(attrs, pad_input)
- class furiosa.quantizer.frontend.onnx.transformer.fuse_pad.Pattern_2(model)
Bases:
furiosa.quantizer.frontend.onnx.transformer.fuse_pad.Pattern_1
- transform
prev –> Pad –> AveragePool –> next
- to
prev –> AveragePool –> next
- if 1. Pad.mode == ‘constant’
Pad.constant_value == 0.0
padded on spatial dimension
AveragePool.count_include_pad == 1 or all AveragePool.pads == 0
AveragePool.ceil_mode == 0
fused_pads[i] < kernel_shape[i] and fused_pads[i + kernel_rank] < kernel_shape[i] for all i
- check_condition_2(node)
- check_condition_4(node)
- check_condition_5(node)
- get_attrs(node)
- make_new_node(matched_nodes)
- pattern_condition_checker(matched_nodes)
- pattern_to_match = ['Pad', 'AveragePool']
- update_attrs(attrs, pad_input)
furiosa.quantizer.frontend.onnx.transformer.fuse_redundant_reshape_pattern module
- class furiosa.quantizer.frontend.onnx.transformer.fuse_redundant_reshape_pattern.FuseRedundantReshapePattern(*args, **kwds)
Bases:
furiosa.quantizer.interfaces.transformer.Transformer
- transform(model: onnx.onnx_ml_pb2.ModelProto) onnx.onnx_ml_pb2.ModelProto
- class furiosa.quantizer.frontend.onnx.transformer.fuse_redundant_reshape_pattern.Pattern_1(model)
Bases:
furiosa.quantizer.frontend.onnx.transformer.ONNXTransformer
- transform
prev –> Reshape –> Reshape –> next
- to
prev –> Reshape –> next
if prev.output[0].shape != next.input[0].shape
- make_new_init(matched_nodes)
- make_new_node(matched_nodes)
- make_new_vi(matched_nodes)
- pattern_condition_checker(nodes_to_check)
- pattern_matching(base_node)
- pattern_to_match = ['Reshape', 'Reshape']
- postfix = '_reshape_fused'
- class furiosa.quantizer.frontend.onnx.transformer.fuse_redundant_reshape_pattern.Pattern_2(model)
Bases:
furiosa.quantizer.frontend.onnx.transformer.fuse_redundant_reshape_pattern.Pattern_1
- transform
prev –> Reshape –> Reshape –> Reshape –> next
- to
prev –> Reshape –> next
if prev.output[0].shape != next.input[0].shape
- pattern_to_match = ['Reshape', 'Reshape', 'Reshape']
- class furiosa.quantizer.frontend.onnx.transformer.fuse_redundant_reshape_pattern.Pattern_3(model)
Bases:
furiosa.quantizer.frontend.onnx.transformer.fuse_redundant_reshape_pattern.Pattern_1
- transform
prev –> Flatten/Squeeze –> Unsqueeze –> next
- to
prev –> Reshape –> next
if prev.output[0].shape != next.input[0].shape
- make_new_init(matched_nodes)
- make_new_node(matched_nodes)
- make_new_vi(matched_nodes)
- pattern_to_match = ['Flatten/Squeeze', 'Unsqueeze']
furiosa.quantizer.frontend.onnx.transformer.polish_model module
- class furiosa.quantizer.frontend.onnx.transformer.polish_model.PolishModel(input_shapes: Optional[Dict[str, List[int]]] = None)
Bases:
furiosa.quantizer.interfaces.transformer.Transformer
[onnx.onnx_ml_pb2.ModelProto
]Essential graph transformer/optimizers
- transform(model: onnx.onnx_ml_pb2.ModelProto) onnx.onnx_ml_pb2.ModelProto
furiosa.quantizer.frontend.onnx.transformer.utils module
- furiosa.quantizer.frontend.onnx.transformer.utils.eliminate_unused_initializer(model)
- furiosa.quantizer.frontend.onnx.transformer.utils.eliminate_unused_input(model)
- furiosa.quantizer.frontend.onnx.transformer.utils.eliminate_unused_output(model)
- furiosa.quantizer.frontend.onnx.transformer.utils.eliminate_unused_protos(model)
- furiosa.quantizer.frontend.onnx.transformer.utils.eliminate_unused_value_info(model)
- furiosa.quantizer.frontend.onnx.transformer.utils.fix_batch_size_as_one(model)
fix batch_size = 1 if dim_param is given.
- furiosa.quantizer.frontend.onnx.transformer.utils.include_initializer_to_graph_input(model)
- furiosa.quantizer.frontend.onnx.transformer.utils.make_conv_bias_name_unique(model)
- furiosa.quantizer.frontend.onnx.transformer.utils.name_nodes(model)
- furiosa.quantizer.frontend.onnx.transformer.utils.rebuild_model(model, new_nodes, eliminate=True, renaming=True)
Module contents
- class furiosa.quantizer.frontend.onnx.transformer.ONNXTransformer(model)
Bases:
object
- bridge_disconnected_nodes(node_0: onnx.onnx_ml_pb2.NodeProto, next_nodes: List[onnx.onnx_ml_pb2.NodeProto], new_input)
- For a graph changed, for example,
before) prev –> node_1 –> node_0 –> next after) prev –> node_1 –> ( ) -/-> next
- This function bridges node_1 and next as follows:
prev –> node_1 –> next by assigning next.input[y] = node_1.output[x]
- build_optimized_model(model)
- copy_value_info(name)
- find_next_node(node: onnx.onnx_ml_pb2.NodeProto) List[onnx.onnx_ml_pb2.NodeProto]
- find_prev_node(node_input: str) onnx.onnx_ml_pb2.NodeProto
- get_data_node_input(node)
- get_init_node_input(node)
- get_initializer_array(node_input)
- get_map_values(field)
- get_value_info_shape(value_info_name: str) List[int]
- is_op_type(op_type: str, target_op_types: List[str])
- is_same_shape(input_1, input_2)
- make_field_unique(values)
- make_initializer_from_array(array: numpy.array, name: Optional[str] = None) onnx.onnx_ml_pb2.TensorProto
- make_int64_initializer(name, target_name)
- make_node(op_type, inputs, outputs, name=None, **attrs)
- make_tensor_value_info(name, elem_type, shape)
- pattern_condition_checker(nodes_to_check)
- pattern_matcher(node, pattern_to_match: List[str])
- pattern_matching(node)
- pop_multiple_initializer_map(nodes: List[onnx.onnx_ml_pb2.TensorProto])
- pop_multiple_optimizer_map(nodes: List[onnx.onnx_ml_pb2.NodeProto])
- pop_multiple_value_info_map(vis: List[onnx.onnx_ml_pb2.ValueInfoProto])
- pop_single_initializer_map(init: onnx.onnx_ml_pb2.TensorProto)
- pop_single_optimizer_map(node: onnx.onnx_ml_pb2.NodeProto)
- pop_single_value_info_map(vi: onnx.onnx_ml_pb2.NodeProto)
- transform()
- transform_to_convert(nodes_to_remove: List[onnx.onnx_ml_pb2.NodeProto], nodes_to_add: Optional[List[onnx.onnx_ml_pb2.NodeProto]] = None, inits_to_add: Optional[List[onnx.onnx_ml_pb2.TensorProto]] = None, vis_to_add: Optional[List[onnx.onnx_ml_pb2.ValueInfoProto]] = None)
- transform_to_eliminate(nodes_to_remove: List[onnx.onnx_ml_pb2.NodeProto], new_input)
- transform_to_fuse(nodes_to_remove: List[onnx.onnx_ml_pb2.NodeProto], nodes_to_add: Optional[List[onnx.onnx_ml_pb2.NodeProto]] = None, inits_to_add: Optional[List[onnx.onnx_ml_pb2.TensorProto]] = None, vis_to_add: Optional[List[onnx.onnx_ml_pb2.ValueInfoProto]] = None)
- traverse_prev_node(producer_map_key: str, target_op_types: List[str])
- update_graph_fields(model)
- update_multiple_initializer_map(initializers: List[onnx.onnx_ml_pb2.TensorProto])
- update_multiple_optimizer_map(nodes: List[onnx.onnx_ml_pb2.NodeProto], dest_name)
- update_multiple_value_info_map(value_infos: List[onnx.onnx_ml_pb2.ValueInfoProto])
- update_single_initializer_map(initializer: onnx.onnx_ml_pb2.TensorProto)
- update_single_optimizer_map(node: onnx.onnx_ml_pb2.NodeProto, dest_name)
- update_single_value_info_map(value_info: onnx.onnx_ml_pb2.ValueInfoProto)