Model Server (Serving Framework)
To serve DNN models through GRPC and REST API, you can use Furiosa Model Server. Model Server provides the endpoints compatible with KServe Predict Protocol Version 2.
Its major features are:
REST/GRPC endpoints support
Multiple model serving using multiple NPU devices
Installation
Its requirements are:
Ubuntu 18.04 LTS (Debian buster) or higher
Python 3.7 or higher version
If you need Python environment, please refer to Python execution environment setup first.
Run the following command
$ pip install 'furiosa-sdk[server]'
Check out the source code and run the following command
$ git clone https://github.com/furiosa-ai/furiosa-sdk.git
$ cd furiosa-sdk/python/furiosa-server
$ pip install .
Running a Model Server
You can run model sever command by running furiosa server
in your shell.
To run simply a model server with tflite
or onnx
, you need to specify
just the model path and its name as following:
$ cd furiosa-sdk
$ furiosa server \
--model-path examples/assets/quantized_models/MNISTnet_uint8_quant_without_softmax.tflite \
--model-name mnist
--model-path
option allows to specify a path of a model file.
If you want to use a specific binding address and port, you can use additionally
--host
, --host-port
.
Please run furiosa server --help
if you want to learn more
about the command with various options.
$ furiosa server --help
Usage: furiosa server [OPTIONS]
Start serving models from FuriosaAI model server
Options:
--log-level [ERROR|INFO|WARN|DEBUG|TRACE]
[default: LogLevel.INFO]
--model-path TEXT Path to Model file (tflite, onnx are
supported)
--model-name TEXT Model name used in URL path
--model-version TEXT Model version used in URL path [default:
default]
--host TEXT IP address to bind [default: 0.0.0.0]
--http-port INTEGER HTTP port to listen to requests [default:
8080]
--model-config FILENAME Path to a config file about models with
specific configurations
--server-config FILENAME Path to Model file (tflite, onnx are
supported)
--install-completion [bash|zsh|fish|powershell|pwsh]
Install completion for the specified shell.
--show-completion [bash|zsh|fish|powershell|pwsh]
Show completion for the specified shell, to
copy it or customize the installation.
--help Show this message and exit.
Running a Model Server with a Configuration File
If you need more advanced configurations like compilation options and device options, you can use a configuration file based on Yaml.
model_config_list:
- name: mnist
path: "samples/data/MNISTnet_uint8_quant.tflite"
version: 1
npu_device: npu0pe0
compiler_config:
keep_unsignedness: true
split_unit: 0
- name: ssd
path: "samples/data/tflite/SSD512_MOBILENET_V2_BDD_int_without_reshape.tflite"
version: 1
npu_device: npu0pe1
When you run a model sever with a configuration file,
you need to specify --model-config
as following.
You can find the model files described in the above example from
furiosa-models/samples.
$ cd furiosa-sdk/python/furiosa-server
$ furiosa server --model-config samples/model_config_example.yaml
Saving the compilation log into /Users/hyunsik/.local/state/furiosa/logs/compile-20211126143917-2731kz.log
Using furiosa-compiler 0.5.0 (rev: 407c0c51f built at 2021-11-26 12:05:30)
2021-11-26T22:39:17.819518Z INFO Npu (npu0pe0) is being initialized
2021-11-26T22:39:17.823511Z INFO NuxInner create with pes: [PeId(0)]
...
INFO: Started server process [62087]
INFO:uvicorn.error:Started server process [62087]
INFO: Waiting for application startup.
INFO:uvicorn.error:Waiting for application startup.
INFO: Application startup complete.
INFO:uvicorn.error:Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8080 (Press CTRL+C to quit)
INFO:uvicorn.error:Uvicorn running on http://0.0.0.0:8080 (Press CTRL+C to quit)
Once a model server starts up, you can call the inference request through HTTP protocol.
If the model name is mnist
and its version 1
, the endpoint of the model will be
http://<host>:<port>/v2/models/mnist/version/1/infer
, accepting POST
http request.
The following is an example using curl
to send the inference request and return the response.
The following is a Python example, doing same as curl
does in the above example.
import requests
import mnist
import numpy as np
mnist_images = mnist.train_images().reshape((60000, 1, 28, 28)).astype(np.uint8)
url = 'http://localhost:8080/v2/models/mnist/versions/1/infer'
data = mnist_images[0:1].flatten().tolist()
request = {
"inputs": [{
"name":
"mnist",
"datatype": "UINT8",
"shape": (1, 1, 28, 28),
"data": data
}]
}
response = requests.post(url, json=request)
print(response.json())
Endpoints
The following table shows REST API endpoints and its descriptions. The model server is following KServe Predict Protocol Version 2. So, you can find more details from KServe Predict Protocol Version 2 - HTTP/REST.
Method and Endpoint |
Description |
---|---|
GET /v2/health/live |
Returns HTTP Ok (200) if the inference server is able to receive and respond to metadata and inference requests. This API can be directly used for the Kubernetes livenessProbe. |
GET /v2/health/ready |
Returns HTTP Ok (200) if all the models are ready for inferencing. This API can be directly used for the Kubernetes readinessProbe. |
GET /v2/models/${MODEL_NAME}/versions/${MODEL_VERSION} |
Returns a model metadata |
GET /v2/models/${MODEL_NAME}/versions/${MODEL_VERSION}/ready |
Returns HTTP Ok (200) if a specific model is ready for inferencing. |
POST /v2/models/${MODEL_NAME}[/versions/${MODEL_VERSION}]/infer |
Inference request |