furiosa.registry package
Submodules
furiosa.registry.errors module
- exception furiosa.registry.errors.RegistryError(msg)
Bases:
Exception
furiosa.registry.model module
- class furiosa.registry.model.Config
Bases:
pydantic.config.BaseConfig
- extra: pydantic.config.Extra = 'forbid'
- class furiosa.registry.model.Format(value)
Bases:
str
,enum.Enum
Model binary format to represent the binary specified.
- ONNX = 'onnx'
- TFLite = 'tflite'
- class furiosa.registry.model.Metadata(*, description: Optional[str] = None, publication: Optional[furiosa.registry.model.Publication] = None)
Bases:
pydantic.main.BaseModel
Model metadata to understand a model.
- description: Optional[str]
- publication: Optional[furiosa.registry.model.Publication]
- class furiosa.registry.model.Model(*, name: str, source: bytes, format: furiosa.registry.model.Format, dfg: Optional[bytes] = None, enf: Optional[bytes] = None, family: Optional[str] = None, version: Optional[str] = None, metadata: Optional[furiosa.registry.model.Metadata] = None, inputs: Optional[List[furiosa.registry.model.ModelTensor]] = [], outputs: Optional[List[furiosa.registry.model.ModelTensor]] = [], compiler_config: Optional[Dict] = None)
Bases:
pydantic.main.BaseModel
Represent the artifacts and metadata of a neural network model
- name
a name of this model
- format
the binary format type of model source; e.g., ONNX, tflite
- source
a source binary in ONNX or tflite. It can be used for compiling this model with a custom compiler configuration.
- dfg
an intermediate representation of furiosa-compiler. Native post processor implementation uses dfg binary. Users don’t need to use dfg directly.
- enf
the executable binary for furiosa runtime and NPU
- version
model version
- inputs
data type and shape of input tensors
- outputs
data type and shape of output tensors
- compiler_config
a pre-defined compiler option
- compiler_config: Optional[Dict]
- dfg: Optional[bytes]
- enf: Optional[bytes]
- family: Optional[str]
- format: furiosa.registry.model.Format
- inputs: Optional[List[furiosa.registry.model.ModelTensor]]
- metadata: Optional[furiosa.registry.model.Metadata]
- name: str
- outputs: Optional[List[furiosa.registry.model.ModelTensor]]
- source: bytes
- version: Optional[str]
- class furiosa.registry.model.ModelTensor(*, name: str, datatype: str, shape: List[int], tags: Optional[furiosa.registry.model.Tags] = None)
Bases:
pydantic.main.BaseModel
- datatype: str
- name: str
- shape: List[int]
- tags: Optional[furiosa.registry.model.Tags]
- class furiosa.registry.model.Publication(*, authors: Optional[List[str]] = None, title: Optional[str] = None, publisher: Optional[str] = None, date: Optional[datetime.date] = None, url: Optional[str] = None)
Bases:
pydantic.main.BaseModel
Model publication information.
- authors: Optional[List[str]]
- date: Optional[datetime.date]
- publisher: Optional[str]
- title: Optional[str]
- url: Optional[str]
furiosa.registry.utils module
- furiosa.registry.utils.import_module(directory: str, path: str) module
Import module via specified path from the local directory.
- furiosa.registry.utils.python_path(directory: str) Iterator[None]
Context adding the directory into PYTHONPATH.
- furiosa.registry.utils.removeprefix(word: str, prefix: str) str
Python 3.9 removeprefix().
See https://docs.python.org/3/library/stdtypes.html#str.removeprefix
- furiosa.registry.utils.working_directory(directory: str) Iterator[None]
Context replacing current working directory.
Module contents
FuriosaAI model registry