furiosa.server.types package
Submodules
furiosa.server.types.model_repository module
- class furiosa.server.types.model_repository.RepositoryIndexErrorResponse(*, error: Optional[str] = None)
Bases:
pydantic.main.BaseModel
- error: Optional[str]
- class furiosa.server.types.model_repository.RepositoryIndexRequest(*, ready: Optional[bool] = None)
Bases:
pydantic.main.BaseModel
- ready: Optional[bool]
- class furiosa.server.types.model_repository.RepositoryIndexResponse(*, __root__: List[furiosa.server.types.model_repository.RepositoryIndexResponseItem])
Bases:
pydantic.main.BaseModel
- class furiosa.server.types.model_repository.RepositoryIndexResponseItem(*, name: str, version: Optional[str] = None, state: furiosa.server.types.model_repository.State, reason: str)
Bases:
pydantic.main.BaseModel
- name: str
- reason: str
- version: Optional[str]
- class furiosa.server.types.model_repository.RepositoryLoadErrorResponse(*, error: Optional[str] = None)
Bases:
pydantic.main.BaseModel
- error: Optional[str]
furiosa.server.types.predict module
- class furiosa.server.types.predict.InferenceErrorResponse(*, error: Optional[str] = None)
Bases:
pydantic.main.BaseModel
- error: Optional[str]
- class furiosa.server.types.predict.InferenceRequest(*, id: Optional[str] = None, parameters: Optional[furiosa.server.types.predict.Parameters] = None, inputs: List[furiosa.server.types.predict.RequestInput], outputs: Optional[List[furiosa.server.types.predict.RequestOutput]] = None)
Bases:
pydantic.main.BaseModel
- id: Optional[str]
- inputs: List[furiosa.server.types.predict.RequestInput]
- outputs: Optional[List[furiosa.server.types.predict.RequestOutput]]
- parameters: Optional[furiosa.server.types.predict.Parameters]
- class furiosa.server.types.predict.InferenceResponse(*, model_name: str, model_version: Optional[str] = None, id: Optional[str] = None, parameters: Optional[furiosa.server.types.predict.Parameters] = None, outputs: List[furiosa.server.types.predict.ResponseOutput])
Bases:
pydantic.main.BaseModel
- id: Optional[str]
- model_name: str
- model_version: Optional[str]
- outputs: List[furiosa.server.types.predict.ResponseOutput]
- parameters: Optional[furiosa.server.types.predict.Parameters]
- class furiosa.server.types.predict.MetadataModelErrorResponse(*, error: str)
Bases:
pydantic.main.BaseModel
- error: str
- class furiosa.server.types.predict.MetadataModelResponse(*, name: str, versions: Optional[List[str]] = None, platform: str, inputs: Optional[List[furiosa.server.types.predict.MetadataTensor]] = None, outputs: Optional[List[furiosa.server.types.predict.MetadataTensor]] = None)
Bases:
pydantic.main.BaseModel
- inputs: Optional[List[furiosa.server.types.predict.MetadataTensor]]
- name: str
- outputs: Optional[List[furiosa.server.types.predict.MetadataTensor]]
- platform: str
- versions: Optional[List[str]]
- class furiosa.server.types.predict.MetadataServerErrorResponse(*, error: str)
Bases:
pydantic.main.BaseModel
- error: str
- class furiosa.server.types.predict.MetadataServerResponse(*, name: str, version: str, extensions: List[str])
Bases:
pydantic.main.BaseModel
- extensions: List[str]
- name: str
- version: str
- class furiosa.server.types.predict.MetadataTensor(*, name: str, datatype: str, shape: List[int], tags: Optional[furiosa.server.types.predict.Tags] = None)
Bases:
pydantic.main.BaseModel
- datatype: str
- name: str
- shape: List[int]
- tags: Optional[furiosa.server.types.predict.Tags]
- class furiosa.server.types.predict.Parameters(*, content_type: Optional[str] = None, **extra_data: Any)
Bases:
pydantic.main.BaseModel
- content_type: Optional[str]
- class furiosa.server.types.predict.RequestInput(*, name: str, shape: List[int], datatype: str, parameters: Optional[furiosa.server.types.predict.Parameters] = None, data: furiosa.server.types.predict.TensorData)
Bases:
pydantic.main.BaseModel
- datatype: str
- name: str
- parameters: Optional[furiosa.server.types.predict.Parameters]
- shape: List[int]
- class furiosa.server.types.predict.RequestOutput(*, name: str, parameters: Optional[furiosa.server.types.predict.Parameters] = None)
Bases:
pydantic.main.BaseModel
- name: str
- parameters: Optional[furiosa.server.types.predict.Parameters]
- class furiosa.server.types.predict.ResponseOutput(*, name: str, shape: List[int], datatype: str, parameters: Optional[furiosa.server.types.predict.Parameters] = None, data: furiosa.server.types.predict.TensorData)
Bases:
pydantic.main.BaseModel
- datatype: str
- name: str
- parameters: Optional[furiosa.server.types.predict.Parameters]
- shape: List[int]
- class furiosa.server.types.predict.Tags(*, content_type: Optional[str] = None, **extra_data: Any)
Bases:
pydantic.main.BaseModel
- content_type: Optional[str]
- class furiosa.server.types.predict.TensorData(*, __root__: Any)
Bases:
pydantic.main.BaseModel
Module contents
- class furiosa.server.types.InferenceErrorResponse(*, error: Optional[str] = None)
Bases:
pydantic.main.BaseModel
- error: Optional[str]
- class furiosa.server.types.InferenceRequest(*, id: Optional[str] = None, parameters: Optional[furiosa.server.types.predict.Parameters] = None, inputs: List[furiosa.server.types.predict.RequestInput], outputs: Optional[List[furiosa.server.types.predict.RequestOutput]] = None)
Bases:
pydantic.main.BaseModel
- id: Optional[str]
- inputs: List[furiosa.server.types.predict.RequestInput]
- outputs: Optional[List[furiosa.server.types.predict.RequestOutput]]
- parameters: Optional[furiosa.server.types.predict.Parameters]
- class furiosa.server.types.InferenceResponse(*, model_name: str, model_version: Optional[str] = None, id: Optional[str] = None, parameters: Optional[furiosa.server.types.predict.Parameters] = None, outputs: List[furiosa.server.types.predict.ResponseOutput])
Bases:
pydantic.main.BaseModel
- id: Optional[str]
- model_name: str
- model_version: Optional[str]
- outputs: List[furiosa.server.types.predict.ResponseOutput]
- parameters: Optional[furiosa.server.types.predict.Parameters]
- class furiosa.server.types.MetadataModelErrorResponse(*, error: str)
Bases:
pydantic.main.BaseModel
- error: str
- class furiosa.server.types.MetadataModelResponse(*, name: str, versions: Optional[List[str]] = None, platform: str, inputs: Optional[List[furiosa.server.types.predict.MetadataTensor]] = None, outputs: Optional[List[furiosa.server.types.predict.MetadataTensor]] = None)
Bases:
pydantic.main.BaseModel
- inputs: Optional[List[furiosa.server.types.predict.MetadataTensor]]
- name: str
- outputs: Optional[List[furiosa.server.types.predict.MetadataTensor]]
- platform: str
- versions: Optional[List[str]]
- class furiosa.server.types.MetadataServerErrorResponse(*, error: str)
Bases:
pydantic.main.BaseModel
- error: str
- class furiosa.server.types.MetadataServerResponse(*, name: str, version: str, extensions: List[str])
Bases:
pydantic.main.BaseModel
- extensions: List[str]
- name: str
- version: str
- class furiosa.server.types.MetadataTensor(*, name: str, datatype: str, shape: List[int], tags: Optional[furiosa.server.types.predict.Tags] = None)
Bases:
pydantic.main.BaseModel
- datatype: str
- name: str
- shape: List[int]
- tags: Optional[furiosa.server.types.predict.Tags]
- class furiosa.server.types.Parameters(*, content_type: Optional[str] = None, **extra_data: Any)
Bases:
pydantic.main.BaseModel
- content_type: Optional[str]
- class furiosa.server.types.RepositoryIndexErrorResponse(*, error: Optional[str] = None)
Bases:
pydantic.main.BaseModel
- error: Optional[str]
- class furiosa.server.types.RepositoryIndexRequest(*, ready: Optional[bool] = None)
Bases:
pydantic.main.BaseModel
- ready: Optional[bool]
- class furiosa.server.types.RepositoryIndexResponse(*, __root__: List[furiosa.server.types.model_repository.RepositoryIndexResponseItem])
Bases:
pydantic.main.BaseModel
- class furiosa.server.types.RepositoryIndexResponseItem(*, name: str, version: Optional[str] = None, state: furiosa.server.types.model_repository.State, reason: str)
Bases:
pydantic.main.BaseModel
- name: str
- reason: str
- version: Optional[str]
- class furiosa.server.types.RepositoryLoadErrorResponse(*, error: Optional[str] = None)
Bases:
pydantic.main.BaseModel
- error: Optional[str]
- class furiosa.server.types.RepositoryUnloadErrorResponse(*, error: Optional[str] = None)
Bases:
pydantic.main.BaseModel
- error: Optional[str]
- class furiosa.server.types.RequestInput(*, name: str, shape: List[int], datatype: str, parameters: Optional[furiosa.server.types.predict.Parameters] = None, data: furiosa.server.types.predict.TensorData)
Bases:
pydantic.main.BaseModel
- datatype: str
- name: str
- parameters: Optional[furiosa.server.types.predict.Parameters]
- shape: List[int]
- class furiosa.server.types.RequestOutput(*, name: str, parameters: Optional[furiosa.server.types.predict.Parameters] = None)
Bases:
pydantic.main.BaseModel
- name: str
- parameters: Optional[furiosa.server.types.predict.Parameters]
- class furiosa.server.types.ResponseOutput(*, name: str, shape: List[int], datatype: str, parameters: Optional[furiosa.server.types.predict.Parameters] = None, data: furiosa.server.types.predict.TensorData)
Bases:
pydantic.main.BaseModel
- datatype: str
- name: str
- parameters: Optional[furiosa.server.types.predict.Parameters]
- shape: List[int]
- class furiosa.server.types.State(value)
Bases:
enum.Enum
An enumeration.
- LOADING = 'LOADING'
- READY = 'READY'
- UNAVAILABLE = 'UNAVAILABLE'
- UNKNOWN = 'UNKNOWN'
- UNLOADING = 'UNLOADING'
- class furiosa.server.types.Tags(*, content_type: Optional[str] = None, **extra_data: Any)
Bases:
pydantic.main.BaseModel
- content_type: Optional[str]
- class furiosa.server.types.TensorData(*, __root__: Any)
Bases:
pydantic.main.BaseModel